Answer: (20.86, 22.52)
Explanation:
Formula to find the confidence interval for population mean :-
![\overline{x}\pm z^*(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/m4kk1cd8pxb35xqffgenasmh6i465nq162.png)
, where
= sample mean.
z*= critical z-value
n= sample size.
= Population standard deviation.
By considering the given question , we have
![\overline{x}= 21.69](https://img.qammunity.org/2020/formulas/mathematics/college/7klr92e8xai93btyx2e6v2y7rd23tf34ts.png)
![\sigma=3.23](https://img.qammunity.org/2020/formulas/mathematics/college/1nwul8b2e4skbtckne8cp8ez5vhbrdxkli.png)
n= 58
Using z-table, the critical z-value for 95% confidence = z* = 1.96
Then, 95% confidence interval for the amount of time spent on administrative issues will be :
![21.69\pm (1.96)(3.23)/(√(58))](https://img.qammunity.org/2020/formulas/mathematics/college/hl10ru0otbsi1b3ifj43a35vb6ftanurw2.png)
![=21.69\pm (1.96)(1.7)/(7.61577)](https://img.qammunity.org/2020/formulas/mathematics/college/6ecvxe0985xq1v6xslqag8vwu1qti7ypgu.png)
![=21.69\pm (1.96)(0.223221)](https://img.qammunity.org/2020/formulas/mathematics/college/zvslk6t9bcz7vodtnu1u4t87ctcxet3x0z.png)
![\approx21.69\pm0.83](https://img.qammunity.org/2020/formulas/mathematics/college/thp099nqjk5o6wqibreg29fh8lzez6f1k7.png)
![=(21.69-0.83,\ 21.69+0.83)=(20.86,\ 22.52)](https://img.qammunity.org/2020/formulas/mathematics/college/3wc1ieajdlc7difqpk6pgly6ea44g75mks.png)
Hence, the 95% confidence interval for the amount of time spent on administrative issues = (20.86, 22.52)