218k views
1 vote
From a random sample of 58 businesses, it is found that the mean time the owner spends on administrative issues each week is 21.69 with a population standard deviation of 3.23. What is the 95% confidence interval for the amount of time spent on administrative issues?

User Rob Hales
by
5.7k points

1 Answer

5 votes

Answer: (20.86, 22.52)

Explanation:

Formula to find the confidence interval for population mean :-


\overline{x}\pm z^*(\sigma)/(√(n))

, where
\overline{x} = sample mean.

z*= critical z-value

n= sample size.


\sigma = Population standard deviation.

By considering the given question , we have


\overline{x}= 21.69


\sigma=3.23

n= 58

Using z-table, the critical z-value for 95% confidence = z* = 1.96

Then, 95% confidence interval for the amount of time spent on administrative issues will be :


21.69\pm (1.96)(3.23)/(√(58))


=21.69\pm (1.96)(1.7)/(7.61577)


=21.69\pm (1.96)(0.223221)


\approx21.69\pm0.83


=(21.69-0.83,\ 21.69+0.83)=(20.86,\ 22.52)

Hence, the 95% confidence interval for the amount of time spent on administrative issues = (20.86, 22.52)

User Rob Mason
by
5.3k points