Answer:
![\left\{\begin{array}{l}x\ge 0\\ \\y\ge 0\\ \\2x+y\le 15\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l3jrebzl6uxn7y1vqdm3k1t6dddjoivrco.png)
Explanation:
Let x be the number of lily bulbs and y be the number of tulip bulbs Kenji bought. Note that
![x\ge 0, \ y\ge 0.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wew9lvkoeg3ugt1rtj1trnuqi67driwrjt.png)
Lily bulbs cost $4 each, then x lily bulbs cost $4x.
Tulip bulbs cost $2 each, then y tulip bulbs cost $2y.
In total, x lily bulbs and y tulip bulbs cost
Kenji has at most $30 to spend on lily bulbs and tulip bulbs at his local flower store, so
![4x+2y\le 30\\ \\2x+y\le 15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hfx12t2dxlyftzwnjkmp2d8bpo0cx0r4ew.png)
So, you get the system of three inequalities:
![\left\{\begin{array}{l}x\ge 0\\ \\y\ge 0\\ \\2x+y\le 15\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l3jrebzl6uxn7y1vqdm3k1t6dddjoivrco.png)
Attached diagram shows the solution set - triangle with verticis (0,0), (0,15) and (7.5,0). All points inside this triangle are the solutions (possible numbers of lily bulbs, x, and tulip bulbs, y).