Answer:
![\frac{3b\sqrt[3]{c^(2)} }{a^(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wr4o9t2nddcqxkc27kh6iojmkvql9vhac0.png)
Explanation:
∛(27a⁻⁶b³c²)
To simplify, first apply the cube root the each of the terms. Keep in mind this rule:
![\sqrt[n]{a^(m)} = (\sqrt[n]{a})^(m) = a^(m/n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9ub88es8ibsilfpbu90pwlveeak06ov9i5.png)
∛27 = 3 (because 3*3*3 = 27)
∛a⁻⁶ =
=
=
![(1)/(a^(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jerzyhvxrm390atkw1h0mo7nny0x9a5ci2.png)
∛b³ =
=
= b
∛c² =
![c^(2/3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8p3gkyh4y2xlyfa8fjf5vb8jh8tb8dozv1.png)
∛(27a⁻⁶b³c²)
=
![\frac{3b\sqrt[3]{c^(2)} }{a^(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wr4o9t2nddcqxkc27kh6iojmkvql9vhac0.png)
Simplified form generally follows these rules:
No negative exponents
No fraction exponents
Keep in fractional form
Reduce numerical values