Answer:
Option d) 5 to the power of negative 5 over 6 is correct.
![\frac{\sqrt[3]{\bf 5} * √(\bf 5)}{\sqrt[3]{\bf 5^(\bf 5)}}= 5^{(\bf -5)/(\bf 6)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w4hy9ucb88ywf6hv8l80p4p60wh5mt6tel.png)
Above equation can be written as 5 to the power of negative 5 over 6.
ie,

Explanation:
Given that cube root of 5 multiplied by square root of 5 over cube root of 5 to the power of 5.
It can be written as below
![\frac{\sqrt[3]{5} * √(5)}{\sqrt[3]{5^5}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yrqzs1pe4zkz2trb14mm7ejos8o5fzk5ur.png)
![\frac{\sqrt[3]{5} * √(5)}{\sqrt[3]{5^5}}= \frac{5^{(1)/(3)} * 5^{(1)/(2)}}{5^{(5)/(3)}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2roarl24fbibwhesfqyobj0vlap58j7p7v.png)
![\frac{\sqrt[3]{5} * √(5)}{\sqrt[3]{5^5}}= \frac{5^{(1)/(3)+(1)/(2)}}{5^{(5)/(3)}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yiks0u1pzwqmxknbo589oecvgii1w87p88.png)
![\frac{\sqrt[3]{5} * √(5)}{\sqrt[3]{5^5}}= \frac{5^{(2+3)/(6)}}{5^{(5)/(3)}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5xic8csddjaftrg6hye3yrgkqet9g2h4hz.png)
![\frac{\sqrt[3]{5} * √(5)}{\sqrt[3]{5^5}}= 5^{(5)/(6)} * 5^{(-5)/(3)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4nnbg6lpzvoo1agy375nibj8m9ozo5oyns.png)
![\frac{\sqrt[3]{5} * √(5)}{\sqrt[3]{5^5}}= 5^{(5-10)/(6)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qeogl4du06qdelqyg2mj7hz5qx9eqz5onc.png)
![\frac{\sqrt[3]{5} * √(5)}{5^5}= 5^{(-5)/(6)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/755atoufncl0wl7bupftcarn9apby90n1r.png)
Above equation can be written as 5 to the power of negative 5 over 6.