180k views
0 votes
Please solve ASAP!
(⁴√9)(√9) ÷ ⁴√9⁵

User Jacki
by
5.1k points

1 Answer

4 votes

Answer:


(\sqrt[4]{9})(√(9))/ \sqrt[4]{9^5}=\frac{\textbf{1}}{\sqrt{\textbf{9}}}

Explanation:

Given expression is


(\sqrt[4]{9})(√(9))/ \sqrt[4]{9^5}

The above expression can be written as


\frac{(9)^{\tfrac{1}{4}}(9^{\tfrac{1}{2}})}{(9^5)^{\tfrac{1}{4}}}


=\frac{9^{\tfrac{1+2}{4}}}{9^{\tfrac{5}{4}}} (by using the formula
a^m* a^n=a^(m+n))


=9^{\tfrac{3}{4}}* 9^{\tfrac{-5}{4}} (by using the formulae
{(a^m)}^n=a^(mn) and
(a^m)/(a^n)=a^(m-n))


=9^{\tfrac{-2}{4}}


=9^{\tfrac{-1}{2}}


=\frac{1}{9^{\tfrac{1}{2}}}


(\sqrt[4]{9})(√(9))/ \sqrt[4]{9^5}=\frac{\textbf{1}}{\sqrt{\textbf{9}}}

User NumenorForLife
by
5.4k points