tan 3pi/4 is equal to -1
Solution:
Given that we have to find value of
![\tan (3 \pi)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dqf31e8dw5dax2uitcg3bytshb1ed97h7h.png)
Let us evaluate the given expression
![\tan (3 \pi)/(4)=\tan \left(\pi-(\pi)/(4)\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eka4kam3dmwqj02yhl34whd18zv2o8xc1z.png)
---- eqn 1
![\text{In} \tan \left(\pi-(\pi)/(4)\right), a=\pi \text { and } b=(\pi)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x7oewgxtzz5f48e83oty8pj35m25lqxhs6.png)
Substituting the values in eqn 1,
![\tan \left(\pi-(\pi)/(4)\right)=(\tan \pi-\tan (\pi)/(4))/(1+\tan \pi \tan (\pi)/(4))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qbvz2gijl3esaik3mytj1jv01l5p5gs6bq.png)
we know that by trignometric values,
![\tan \pi=0 \text { and } \tan (\pi)/(4)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/18t5detcemw9rxiudsxa711agxbj353s6i.png)
Substituting these values we get,
![\tan \left(\pi-(\pi)/(4)\right)=(0-1)/(1+0(1))=(-1)/(1)=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/19d49rulclj51dvl89f3z76si0sfshwf8n.png)
Therefore,
![\tan \left(\pi-(\pi)/(4)\right)=\tan (3 \pi)/(4)=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y3r7p72tx2j75bhsjibf7ez20v5iomjv5j.png)
Thus the value of tan 3pi/4 is -1