Answer:
PartA) resistance R=1.86Ω
PartB) inductnce L=1.26mH
Step-by-step explanation:
In an RL circuit,
![i(t)=(E)/(R)(1-e^{(-t)/((L)/(R))})](https://img.qammunity.org/2020/formulas/physics/college/jpy8y007woo7176lci0dwg5bdmq2ffksbm.png)
where E is the emf of battery
L is inductance of inductor
R is the internal resistance of inductor
given
![i(\infty)=](https://img.qammunity.org/2020/formulas/physics/college/ie4ri60dy7bp7rfoqkfsmsul2tjzzn83f0.png)
max=
![(E)/(R)](https://img.qammunity.org/2020/formulas/physics/high-school/co5to336ga3q2kdy151w414btgqoyimwk7.png)
⇒
![6.45=(E)/(R)](https://img.qammunity.org/2020/formulas/physics/college/e3nrjuum1nkx03x92ievkvuxk2t4htrqb8.png)
⇒
![6.45=(12)/(R)](https://img.qammunity.org/2020/formulas/physics/college/k6dpqyz6sfrb6ltd7xem6vqkx6jpo4g1m3.png)
⇒
Ω
given
![i(0.94ms)=4.86](https://img.qammunity.org/2020/formulas/physics/college/gog44ktio6kb6yv3v4q0ue7hugpy6fy0xt.png)
⇒
![4.86=6.45(1-e^{(-0.94*10^(-3))/((L)/(R))})](https://img.qammunity.org/2020/formulas/physics/college/mk2cs6bsd0bkf745buggza4e9v3t90n9t8.png)
⇒
![0.75=1-e^{(-0.94*10^(-3))/((L)/(R))}](https://img.qammunity.org/2020/formulas/physics/college/6shp3y5ejmk3w8peii6m7isvxiis02t0kn.png)
⇒
![0.25=e^{(-0.94*10^(-3))/((L)/(R))}](https://img.qammunity.org/2020/formulas/physics/college/h5neg6nusrigra26lk50pbdwgqzyxvrvl2.png)
applying logarithm on both sides,
⇒
![log(0.25)=(-0.94*10^(-3))/((L)/(R))](https://img.qammunity.org/2020/formulas/physics/college/ww10hqhhrnvvkbkr58iyy5l4s862pr1nx8.png)
⇒
![log(4)=(0.94*10^(-3))/((L)/(1.86))](https://img.qammunity.org/2020/formulas/physics/college/kytjtj8xydz4ojnvpv63a2dixnvt8u151r.png)
⇒
![L=(0.94*10^(-3)*1.86)/(log4)=1.26mH](https://img.qammunity.org/2020/formulas/physics/college/ebug64mvqwuubsymfdrv35dk4u27mg7owt.png)