171k views
1 vote
The coordinates of the vertices of a polygon are (-2, 1). (-3, 3), (-1, 5), (2, 4), and (2, 1). What is the perimeter of the polygon to the nearest tenth of a unit.

Do not label your answer. Answer with a number only.

User Taewan
by
7.6k points

1 Answer

1 vote

Answer:


15.2\ units

Explanation:

step 1

Plot the vertices of the polygon to better understand the problem

we have


A(-2, 1). B(-3, 3), C(-1, 5), D(2, 4),E(2, 1)

using a graphing tool

The polygon is a pentagon (the number of sides is 5)

see the attached figure

The perimeter is equal to


P=AB+BC+CD+DE+AE

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

step 2

Find the distance AB


A(-2, 1). B(-3, 3)

substitute in the formula


d=\sqrt{(3-1)^(2)+(-3+2)^(2)}


d=\sqrt{(2)^(2)+(-1)^(2)}


d_A_B=√(5)=2.24\ units

step 3

Find the distance BC


B(-3, 3), C(-1, 5)

substitute in the formula


d=\sqrt{(5-3)^(2)+(-1+3)^(2)}


d=\sqrt{(2)^(2)+(2)^(2)}


d_B_C=√(8)=2.83\ units

step 4

Find the distance CD


C(-1, 5), D(2, 4)

substitute in the formula


d=\sqrt{(4-5)^(2)+(2+1)^(2)}


d=\sqrt{(-1)^(2)+(3)^(2)}


d_C_D=√(10)=3.16\ units

step 5

Find the distance DE


D(2, 4),E(2, 1)

substitute in the formula


d=\sqrt{(1-4)^(2)+(2-2)^(2)}


d=\sqrt{(-3)^(2)+(0)^(2)}


d_D_E=√(9)\ units


d_D_E=3\ units

step 6

Find the distance AE


A(-2, 1).E(2, 1)

substitute in the formula


d=\sqrt{(1-1)^(2)+(2+2)^(2)}


d=\sqrt{(0)^(2)+(4)^(2)}


d_A_E=√(16)\ units


d_A_E=4\ units

step 7

Find the perimeter


P=AB+BC+CD+DE+AE

substitute the values


P=2.24+2.83+3.16+3+4=15.23\ units

Round to the nearest tenth of a unit


P=15.2\ units

The coordinates of the vertices of a polygon are (-2, 1). (-3, 3), (-1, 5), (2, 4), and-example-1
User Jeremy Voisey
by
7.8k points