Answer:
distance = 9.495 mm
Explanation:
Given data
slits distance = 0.100 mm
viewing screen distance = 1.50 m
wavelength = 633 nm
to find out
how far apart are the bright fringes on the viewing screen
solution
we use here double slit diffraction condition that is
d sin(θ) = m λ .......................1
here m = 0, 1 , 2 , 3 .....
and here for θ small so
sin(θ) = tan(θ) =
![(x)/(l)](https://img.qammunity.org/2020/formulas/mathematics/college/e3f184z5g7tuz1xeidxgmw8fhfmq5xuwx9.png)
so x = l sin (θ)
so from equation 1
x =
and
x1 =
...............2
x2 =
..............3
so distance x2 - x1 will be
distance =
![(\lambda l)/(d)](https://img.qammunity.org/2020/formulas/mathematics/college/gkdok9aw7wuejwqyetfvaeqr3uqvhl7phv.png)
distance =
![(633*10^(-9)*1.5)/(0.1*10^(-3))](https://img.qammunity.org/2020/formulas/mathematics/college/uc9ods6a5fx9s5pzpveznv8kx3mrg6azf0.png)
distance = 9.495 mm