Answer:
![\int\ {f(x)} \, dx = 9e^x + 2ln(sec(2x) + tan(2x)) + C](https://img.qammunity.org/2020/formulas/mathematics/college/huq3rufnitwkhx8sug0k0oao37ozf73pfs.png)
Explanation:
think of the function having two parts,
and
![4sec(2x)](https://img.qammunity.org/2020/formulas/mathematics/college/ctdgxk07vnqq9yk6i6kfez9h84ud0mphnk.png)
and integrate them separately.
- First integrate
![9e^x](https://img.qammunity.org/2020/formulas/mathematics/college/pw91cm37r2kc4lhgwo99nkmnlwcux8o8gu.png)
![\int\ {9e^x} \, dx \\](https://img.qammunity.org/2020/formulas/mathematics/college/vley9bzj16rwhsdgvxko5pt6fsboooiesz.png)
since 9 is a constant you
![9\int\ {e^x} \, dx\\](https://img.qammunity.org/2020/formulas/mathematics/college/hkrzplflsanoq1b1icfvk1vih158admv5q.png)
![9e^x](https://img.qammunity.org/2020/formulas/mathematics/college/pw91cm37r2kc4lhgwo99nkmnlwcux8o8gu.png)
- Next integrate
![4sec(2x)](https://img.qammunity.org/2020/formulas/mathematics/college/ctdgxk07vnqq9yk6i6kfez9h84ud0mphnk.png)
![\int\ {4sec(2x)} \, dx \\4\int\ {sec(2x)} \, dx \\](https://img.qammunity.org/2020/formulas/mathematics/college/bwugj06ymfzs3xovpgoowhaf285a2nzmk6.png)
we can use u-substitution
and
![du =2dx](https://img.qammunity.org/2020/formulas/mathematics/college/737dnrz7gmwccunjba2gncvyzg1fa0fdm0.png)
![4\int\ {sec(u)} \, (du)/(2) \\2\int\ {sec(u)} \, du\\](https://img.qammunity.org/2020/formulas/mathematics/college/4tpma25ehebiywpy7cw0xscawsiktwt2ny.png)
think of it as only integrating sec(x)
![2(ln(sec(u) + tan(u)))\\2(ln(sec(2x) + tan(2x)))\\](https://img.qammunity.org/2020/formulas/mathematics/college/csi9u6wxh9o4tv7yahomj4oaozrkkefkab.png)
- Now combine the two answers and include the constant of integration (+C)
Answer::
![9e^x + 2ln(sec(2x) + tan(2x)) + C\\](https://img.qammunity.org/2020/formulas/mathematics/college/jrgdqve1r8y2q0ixgjr7lt45d90sqbqhna.png)