Answer:
f'(x) > 0 on
and f'(x)<0 on

Explanation:
1) To find and interval where any given function is increasing, the first derivative of its function must be greater than zero:

To find its decreasing interval :

2) Then let's find the critical point of this function:
![f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}[6-2^(2x)]=\frac{\mathrm{d} }{\mathrm{d}x}[6]-\frac{\mathrm{d}}{\mathrm{d}x}[2^(2x)]=0-[ln(2)*2^(2x)*\frac{\mathrm{d}}{\mathrm{d}x}[2x]=-ln(2)*2^(2x)*2=-ln2*2^(2x+1\Rightarrow )f'(x)=-ln(2)*2^(2x)*2\\-ln(2)*2^(2x+1)=-2x^(2x)(ln(x)+1)=0](https://img.qammunity.org/2020/formulas/mathematics/college/ggbprkkst8ebi75kje3dgmpdlnf2v1tbol.png)
2.2 Solving for x this equation, this will lead us to one critical point since x' is not defined for Real set, and x''
≈0.37 for e≈2.72

3) Finally, check it out the critical point, i.e. f'(x) >0 and below f'(x)<0.