Answer:
82780.42123 m/s
14.45 days
Step-by-step explanation:
m = Mass of the planet
M = Mass of the star =
![0.85* 1.989* 10^(30)\ kg](https://img.qammunity.org/2020/formulas/physics/college/wxvggfrqojkm7hz9dkrjq2dwhznvjwkb82.png)
r = Radius of orbit of planet =
![0.11* 149.6* 10^(9)\ m](https://img.qammunity.org/2020/formulas/physics/college/7rkv7llqy0bzc452ss95x7bleoa9x4qwkp.png)
v = Orbital speed
The kinetic and potential energy balance is given by
![(GMm)/(r^2)=(mv^2)/(r)\\\Rightarrow v=\sqrt{(Gm)/(r)}\\\Rightarrow v=\sqrt{(6.67* 10^(-11)* 0.85* 1.989* 10^(30))/(0.11* 149.6* 10^(9))}\\\Rightarrow v=82780.42123\ m/s](https://img.qammunity.org/2020/formulas/physics/college/z77nj0fto2eey40ux3ldguc0p6kfvmgzeu.png)
The orbital speed of the star is 82780.42123 m/s
The orbital period is given by
![t=(2\pi r)/(v)\\\Rightarrow t=(2\pi * 0.11* 149.6* 10^(9))/(82780.42123)\\\Rightarrow t=1249040.48419\ seconds=(1249040.48419)/(24* 60* 60)=14.45\ days](https://img.qammunity.org/2020/formulas/physics/college/4688bbe233dlqzy462lfoz0hmeth1wx0sg.png)
The orbital period is 14.45 days