The correct option is B). f(x)
The minimum value for y belongs to f(x) at x=0 and f(0)=(-2)
Explanation:
The given two functions are f(x)=
and g(x)=
![3x^(2) +1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z53ulphp3re6zzzm3dyab7ygiied0e7gqp.png)
To find which function got minimum value for y :
For function f(x)=
Using concept of Maxima and Minima,
Function : f(x)=
Differentiating the function we get,
f(x)=
Take
f(x)=0
x=0
Therefore, f(x)=f(0)=0-2=(-2)
For function g(x)=
![3x^(2) +1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z53ulphp3re6zzzm3dyab7ygiied0e7gqp.png)
Using concept of Maxima and Minima,
Function : g(x)=
![3x^(2) +1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z53ulphp3re6zzzm3dyab7ygiied0e7gqp.png)
Differentiating the function we get,
g(x)=
![6x^(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n5qn5qtw0aoqnzvop5wd9v33iy79qapd0a.png)
Take
g(x)=0
=0
x=0
Therefore, g(x)=g(0)=0+1=1
Thus, The minimum value for y belongs to f(x) at x=0 and f(0)=(-2)
The correct option is B). f(x)