Answer:
Option E) 61.6
Explanation:
We are given the following information in the question:
Mean, μ = 100 bushels per acre
Standard Deviation, σ = 30 bushels per acre
We assume that the distribution of yield is a bell shaped distribution that is a normal distribution.
Formula:

P(X>x) = 0.90
We have to find the value of x such that the probability is 0.90
P(X > x)
Calculation the value from standard normal table, we have,

Hence, the yield of 61.6 bushels per acre or more would save the seed.