195k views
4 votes
Find the mass and the center of mass of a wire loop in the shape of a helix (measured in cm: x = t, y = 4 cos(t), z = 4 sin(t) for 0 ≤ t ≤ 2π), if the density (in grams/cm) of the wire at any point is equal to the square of the distance from the origin to the point

User TAbdiukov
by
9.6k points

1 Answer

2 votes

Answer:

Mass


√(17)(\displaystyle(8\pi^3)/(3)+32\pi)

Center of mass

Coordinate x


\displaystyle((\displaystyle((2\pi)^4)/(4)+32\pi))/((\displaystyle(8\pi^3)/(3)+32\pi))

Coordinate y


\displaystyle(16\pi)/((\displaystyle(8\pi^3)/(3)+32\pi))

Coordinate z


\displaystyle(-16\pi)/((\displaystyle(8\pi^3)/(3)+32\pi))

Explanation:

Let W be the wire. We can consider W=(x(t),y(t),z(t)) as a path given by the parametric functions

x(t) = t

y(t) = 4 cos(t)

z(t) = 4 sin(t)

for 0 ≤ t ≤ 2π

If D(x,y,z) is the density of W at a given point (x,y,z), the mass m would be the curve integral along the path W


m=\displaystyle\int_(W)D(x,y,z)=\displaystyle\int_(0)^(2\pi)D(x(t),y(t),z(t))||W'(t)||dt

The density D(x,y,z) is given by


D(x,y,z)=x^2+y^2+z^2=t^2+16cos^2(t)+16sin^2(t)=t^2+16

on the other hand


||W'(t)||=√(1^2+(-4sin(t))^2+(4cos(t))^2)=√(1+16)=√(17)

and we have


m=\displaystyle\int_(W)D(x,y,z)=\displaystyle\int_(0)^(2\pi)D(x(t),y(t),z(t))||W'(t)||dt=\\\\√(17)\displaystyle\int_(0)^(2\pi)(t^2+16)dt=√(17)(\displaystyle(8\pi^3)/(3)+32\pi)

The center of mass is the point
(\bar x,\bar y,\bar z)

where


\bar x=\displaystyle(1)/(m)\displaystyle\int_(W)xD(x,y,z)\\\\\bar y=\displaystyle(1)/(m)\displaystyle\int_(W)yD(x,y,z)\\\\\bar z=\displaystyle(1)/(m)\displaystyle\int_(W)zD(x,y,z)

We have


\displaystyle\int_(W)xD(x,y,z)=√(17)\displaystyle\int_(0)^(2\pi)t(t^2+16)dt=\\\\=√(17)(\displaystyle((2\pi)^4)/(4)+32\pi)

so


\bar x=\displaystyle(√(17)(\displaystyle((2\pi)^4)/(4)+32\pi))/(√(17)(\displaystyle(8\pi^3)/(3)+32\pi))=\displaystyle((\displaystyle((2\pi)^4)/(4)+32\pi))/((\displaystyle(8\pi^3)/(3)+32\pi))


\displaystyle\int_(W)yD(x,y,z)=√(17)\displaystyle\int_(0)^(2\pi)4cos(t)(t^2+16)dt=\\\\=16√(17)\pi


\bar y=\displaystyle(16√(17)\pi)/(√(17)(\displaystyle(8\pi^3)/(3)+32\pi))=\displaystyle(16\pi)/((\displaystyle(8\pi^3)/(3)+32\pi))


\displaystyle\int_(W)zD(x,y,z)=4√(17)\displaystyle\int_(0)^(2\pi)sin(t)(t^2+16)dt=\\\\=-16√(17)\pi


\bar z=\displaystyle(-16√(17)\pi)/(√(17)(\displaystyle(8\pi^3)/(3)+32\pi))=\displaystyle(-16\pi)/((\displaystyle(8\pi^3)/(3)+32\pi))

User ASpex
by
7.5k points