164k views
1 vote
If y=3x^2 - 2x +5

What is the average slope for this function between the points at:


i. x= -3 and x= -1


ii. x=-3 and x=0


iii. x= 1-h and x= 1+h


USE DIFFERENCE QUOTIENT FORMULA.

1 Answer

1 vote

Answer:

Part i) -14

Part ii) 11

Part iii) 4

Explanation:

we know that

The average rate of change or slope using the difference quotient formula is equal to


(f(b)-f(a))/(b-a)

Part i) x= -3 and x= -1

In this problem we have


a=--3


b=-1


f(a)=f(-3)=3(-3)^(2) -2(-3)+5=38


f(b)=f(-1)=3(-1)^(2) -2(-1)+5=10

Substitute


(10-38)/(-1+3)


(-28)/(2)


-14

Part ii) x= -3 and x= 0

In this problem we have


a=--3


b=0


f(a)=f(-3)=3(-3)^(2) -2(-3)+5=38


f(b)=f(0)=3(0)^(2) -2(0)+5=5

Substitute


(5-38)/(0+3)


(-33)/(3)


-11

Part iii) x= (1-h) and x=(1+h)

In this problem we have


a=-(1-h)


b=(1+h)


f(a)=f(1-h)=3(1-h)^(2) -2(1-h)+5=3(1-2h+h^2)-2+2h+5=3-6h+3h^2+2h+3=3h^2-4h+6


f(b)=f(1+h)=3(1+h)^(2) -2(1+h)+5=3(1+2h+h^2)-2-2h+5=3+6h+3h^2-2h+3=3h^2+4h+6

Substitute


((3h^2+4h+6)-(3h^2-4h+6))/(1+h-(1-h))


(8h)/(2h)


4

User Alwin Jose
by
7.9k points