To solve this problem it is necessary to apply the concepts related to conservation of the moment.
By definition for the particular case we have to,
![m_1u_1 = m_2v_2](https://img.qammunity.org/2020/formulas/physics/college/gugsoavhnj1dyc1gkt4sl4fip4qyufqsxr.png)
Where,
Mass first skater
Speed of first skater
Velocity of second skater
Our values are given as,
![m_1= 48Kg](https://img.qammunity.org/2020/formulas/physics/college/e1d83w41bcq6j7ksq3wuo9kqsmlobnvibp.png)
![u_1 = 0.62m/s](https://img.qammunity.org/2020/formulas/physics/college/7kvbj49iyrvitpsg84a5awdwpn90s3nk2f.png)
![v_2 = 0.83m/s](https://img.qammunity.org/2020/formulas/physics/college/8zp7mvzsas6ut33n5r0rg24ibofdy4shuy.png)
Replacing in our equation and re-arrange to find
![m_2,](https://img.qammunity.org/2020/formulas/physics/college/wyxjgoa93u1xs3dz491cledsfzmaonyek2.png)
![m_2 = (m_1u_1)/(v_2)](https://img.qammunity.org/2020/formulas/physics/college/1hwogsnsih18uwea94t7d4s5zk90hpz84p.png)
![m_2 = ((48)(0.62))/(0.83)](https://img.qammunity.org/2020/formulas/physics/college/juj4hgbmmc2ouztf6mbv4j9s7yximcq5e5.png)
![m_2 = 35.85Kg](https://img.qammunity.org/2020/formulas/physics/college/l5bop13u3ftjqah1gkgbjoilvczm889zmn.png)
The mass from the second skater is 35.85Kg