20.6k views
5 votes
Please solve.this question​

Please solve.this question​-example-1
User Pengyang
by
8.0k points

1 Answer

4 votes

Answer:

See explanation

Explanation:

Prove equality


(1-\cot A)^2+(\tan A-1)^2=4\csc 2A(\csc 2A-1)

Consider left and right parts separately.

Left part:


(1-\cot A)^2+(\tan A-1)^2\\ \\=1-2\cot A+\cot^2 A+\tan^2 A-2\tan A+1\\ \\=(1+\cot^2 A)+(1+\tan^2 A)-2(\cot A+\tan A)\\ \\=(1)/(\sin^2 A)+(1)/(\cos ^2A)-2(\cos^2 A+\sin^2 A)/(\cos A\sin A)\\ \\=(1)/(\sin^2 A)+(1)/(\cos ^2A)-(2)/(\cos A\sin A)\\ \\=(\cos^2A+\sin^2A-2\cos A\sin A)/(\cos ^2A\sin ^2A)\\ \\=(1-\sin 2A)/((1)/(4)\cdot 4\cdot \cos^2A\sin^2 A)\\ \\=(1-\sin 2A)/((1)/(4)\cdot \sin^22 A)\\ \\=4(1-\sin 2A)/(\sin^22 A)

Right part:


\csc 2A=(1)/(\sin 2A)

Hence


4\csc 2A(\csc 2A-1)\\ \\=4\cdot (1)/(\sin 2A)\cdot \left((1)/(\sin 2A)-1\right)\\ \\=4\cdot (1)/(\sin 2A)\cdot (1-\sin 2A)/(\sin 2A)\\ \\=4(1-\sin 2A)/(\sin^2 2A)

Since left and right parts are the same, the equality is true.

User Xenooooo
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.