Answer:
![y>-(1)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bano1sqia5xeqt0zassl28nr0a46i4w9kp.png)
Explanation:
Given:
![(1)/(2)(y+3)>(1)/(3)(4-y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/be2ya535vjq75wx9qyq68rcicpqvb43wx3.png)
Step 1: Use distributive property:
![(1)/(2)y+3\cdot (1)/(2)>(1)/(3)\cdot 4-(1)/(3)y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jb9gj414z4te0adc0vpefo5jjd1v10bbrn.png)
Step 2: Using addition property, add
to both sides of inequality:
![(1)/(2)y+(1)/(3)y+(3)/(2)>(4)/(3)-(1)/(3)y+(1)/(3)y\\ \\(1)/(2)y+(1)/(3)y+(3)/(2)>(4)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c5zess5iovtz99ljtar3ioj9mavj2otlll.png)
Step 3: Using addition property, add
to both sides of inequality:
![(1)/(2)y+(1)/(3)y+(3)/(2)-(3)/(2)>(4)/(3)-(3)/(2)\\ \\(1)/(2)y+(1)/(3)y>(4)/(3)-(3)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5lhwgy88j82qic31o8kwnqzsqjdvcyf9px.png)
Step 4: Subtract fractions in the right side:
![(4)/(3)-(3)/(2)=(4\cdot 2-3\cdot 3)/(3\cdot 3)=-(1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yqx2ln1f3dsub1dlclbbays5anq6ou7dhf.png)
Step 5: Use distributive property in left side:
![(1)/(2)y+(1)/(3)y=y\left((1)/(2)+(1)/(3)\right)=(3+2)/(2\cdot 3)y=(5)/(6)y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p71z1z1xrbdtjfhtjws61y2zspbkj613ep.png)
You get the inequality:
![(5)/(6)y>-(1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/us31eatwu6noe2sct78lduj7n4ccx5vitk.png)
Step 6: Use division property:
![y>-(1)/(6):(5)/(6)\\ \\y>-(1)/(6)\cdot (6)/(5)\\ \\y>-(1)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r2p65x60t5y4y8tvazw3t5mqpz48e0owvx.png)