151k views
4 votes
Please help me with these, oh sweet jesus

Please help me with these, oh sweet jesus-example-1

1 Answer

4 votes

Answer:

77.
\cot^(6) x = \cot^(4) x \csc^(2)x - \cot^(4) xProved

78.
\sec^(4)x \tan^(2) x = \sec^(2)x [\tan^(2)x + \tan^(4)x ] Proved

79.
\cos^(3) x\sin^(2) x = [\sin^(2)x - \sin^(4)x] \cos x Proved.

80.
\sin^(4)x - \cos^(4)x = 1 - 2\cos^(2)x + 2 \cos^(4) x Proved.

Explanation:

77. Left hand side

=
\cot^(6) x

=
\cot^(4) x * \cot^(2) x

=
\cot^(4)x [\csc^(2)x - 1]

{Since we know,
\csc^(2) x - \cot^(2)x = 1}

=
\cot^(4) x \csc^(2)x - \cot^(4) x

= Right hand side (Proved)

78. Left hand side

=
\sec^(4)x \tan^(2) x

=
\sec^(2) x [1 + \tan^(2)x] \tan^(2) x

{Since
\sec^(2)x - \tan^(2)x = 1}

=
\sec^(2)x [\tan^(2)x + \tan^(4)x ]

= Right hand side (Proved)

79. Left hand side

=
\cos^(3) x\sin^(2) x

=
\cos x[1 - \sin^(2) x] \sin^(2) x

{Since
\sin^(2)x + \cos^(2) x = 1}

=
[\sin^(2)x - \sin^(4)x] \cos x

= Right hand side

80. Left hand side

=
\sin^(4)x - \cos^(4)x

=
[\sin^(2)x + \cos^(2)x]^(2) - 2\sin^(2) x \cos^(2)x

{Since
\sin^(2)x + \cos^(2) x = 1}

=
1 - 2\cos^(2) x[1 - \cos^(2)x ]

=
1 - 2\cos^(2)x + 2 \cos^(4) x

= Right hand side. (Proved)

User Mbelsky
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories