Answer:
The maximal margin of error associated with a 95% confidence interval for the true population mean is 2.238.
Explanation:
We have given,
The sample size n=42
The sample mean
![\bar{x}=30](https://img.qammunity.org/2020/formulas/mathematics/college/gqmazyr93a4fpqkqer5v7ipez1pdcqn0un.png)
The population standard deviation
![\sigma=7.4](https://img.qammunity.org/2020/formulas/mathematics/college/wcyhobelsd0spj1envrmywm4sqtid66x8l.png)
Let
be the level of significance = 0.05
Using the z-distribution table,
The critical value at 5% level of significance and two tailed z-distribution is
![\pm z_{(0.05)/(2)}=\pm 1.96](https://img.qammunity.org/2020/formulas/mathematics/college/rxm3wa1vpxcx6i6ldlxcesv00sf2jq1g84.png)
The value of margin of error is
![ME=z_(\alpha/2)((\sigma)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/mvpwbgh29lta47hqcwn1vsqruqon5cjl1w.png)
![ME=1.96((7.4)/(√(42)))](https://img.qammunity.org/2020/formulas/mathematics/college/3c5vhy66ntro1w3074l6yuztb9onf77w2n.png)
![ME=1.96(1.1418)](https://img.qammunity.org/2020/formulas/mathematics/college/rsdzwjr0d7lb01yrz7hg8s760b3vhozqeq.png)
![ME=2.238](https://img.qammunity.org/2020/formulas/mathematics/college/y4t04bg1j02obnuixnboyhsocvb4qivy9z.png)
The maximal margin of error associated with a 95% confidence interval for the true population mean is 2.238.