44.3k views
10 votes
Can you find the distance between (5,10) and (8,10)?

2 Answers

13 votes

Answer:

the distance between (5,10) and (8,10) is 3.

Step-by-step explanation:

Here's the required formula to find distance between (5,10) and (8,10) :


\implies{\small{\pmb{\sf{d = \sqrt{\Big(x_(2) - x_(1) \Big)^(2) + \Big(y_(2) - y_(1) \Big)^(2)}}}}}

Here, we have provided :


\begin{gathered}\begin{gathered} \footnotesize\rm {\underline{\underline{Where}}}\begin{cases}& \sf x_2 = 8\\ & \sf x_1 = 5\\ & \sf y_2 = 10\\& \sf y_1 = 10\end{cases} \end{gathered}\end{gathered}

Substituting all the given values in the formula to find the distance between (5,10) and (8,10):


\implies{\small{\sf{d = \sqrt{\Big(x_(2) - x_(1) \Big)^(2) + \Big(y_(2) - y_(1) \Big)^(2)}}}}


\implies{\small{\sf{d = \sqrt{\Big(8 - 5 \Big)^(2) + \Big(10 - 10\Big)^(2)}}}}


\implies{\small{\sf{d = \sqrt{\Big( \: 3 \: \Big)^(2) + \Big( \: 0 \: \Big)^(2)}}}}


\implies{\small{\sf{d = √(\Big(3 * 3 \Big)+ \Big(0 * 0\Big))}}}


\implies{\small{\sf{d = √(\big( \: 9 \: \big)+ \big( \: 0 \: \big))}}}


\implies{\small{\sf{d = √(9 + 0)}}}


\implies{\small{\sf{d = √(9)}}}


\implies{\sf{\underline{\underline{\red{d = 3}}}}}

Hence, the distance between (5,10) and (8,10) is 3.


\rule{300}{2.5}

User Marvzz
by
4.5k points
4 votes

Answer:

3

Explanation:

The distance formula is:


d = \sqrt {\left( {x_2 - x_1 } \right)^2 + \left( {y_2 - y_1 } \right)^2 }

Now we can plug the coordinates into the equation


d = \sqrt {\left({8 - 5 \right)^2 + \left( {10 - 10 } \right)^2 }

Then we simplify


d = \sqrt {\left 3 \right^2 + \left 0 \right^2 }


d=√(9+0)


d=√(9)


d=3

User Venkat Selvan
by
5.2k points