Answer:
x = 0.1116 (rounded to 4 decimal places)
Explanation:
We need to isolate "e" first, so we do:
![4e^(2x)=5\\e^(2x)=(5)/(4)\\e^(2x)=1.25](https://img.qammunity.org/2020/formulas/mathematics/high-school/2wmfgilk966s397jczq7zo4z510ghk4j3h.png)
Solving these types of equations requires us to take the Natural Logarith (Ln) of both sides, so we have:
![e^(2x)=1.25\\Ln(e^(2x))=Ln(1.25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/czk0o59a1669rqodde17np2sx2hl9ugit8.png)
We can use the property of logarithms shown below to further simplify:
![Ln(a^b)=bLn(a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7wsoqgrzb9lt4bwduqjatxijle8yk2ax4h.png)
So, we have:
![Ln(e^(2x))=Ln(1.25)\\(2x)Ln(e)=Ln(1.25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/61sxro4gtml09w0n2furr269tcjbsdj1m9.png)
We know Ln(e) = 1, thus now, we can replace it and solve for x:
![(2x)Ln(e)=Ln(1.25)\\(2x)(1)=Ln(1.25)\\2x=Ln(1.25)\\2x=0.2231\\x=(0.2231)/(2)\\x=0.1116](https://img.qammunity.org/2020/formulas/mathematics/high-school/monl7kfq1qyam3u4ubmplnu0fnyegdapz9.png)
So
x = 0.1116 (rounded to 4 decimal places)