Answer : The correct option is, (A) 30°
Step-by-step explanation :
As we know that:
........(1)
According to trigonometric function,
.........(2)
By comparing 1 and 2, we can say that:
![\cos 30^o=(√(3))/(2)=(Base)/(Hypotenuse)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aic0v33gvmr1n9u6wb2op2swmzatzs1t4t.png)
Now we have to determine the value of perpendicular by using Pythagoras theorem.
![(Hypotenus)^2=(Perpendicular)^2+(Base)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p1gawnbyri05pfl7xfryz2wj22nkbbbq5i.png)
![(2)^2=(Perpendicular)^2+(√(3))^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/amxbil1xvcf6cr4hu3hpgv6b9910wzba6v.png)
![4=(Perpendicular)^2+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mp2dxbc55t9fkwt817p974bs6yk27hbgej.png)
![(Perpendicular)^2=4-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rdl1jmby5ckixu43g791l97ku8n1nbgys5.png)
![(Perpendicular)^2=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sib7y2lgdr3z7jnk6xnn1cynxgg1yjjdui.png)
![Perpendicular=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l7bf4mgvj8m6lmdw89ucwca5lpxclarxc3.png)
Now we have to determine the value of
.
According to trigonometric function,
![\sin \theta=(Perpendicular)/(Hypotenuse)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aix8wbx9axmllwebm5vq88mpdz1yyb77dk.png)
![\sin \theta=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/x3maxy6ecvrmqzw1xo1f7gxfk60vwj1vg0.png)
At
![\theta =30^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vn83jaw4917eqmqva0w8j0jy72jypu1o8e.png)
![\sin 30^o=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cfbfsvz7mfz5w871lji1f0it34fmrytmxg.png)
Hence, the value of
is
![30^o](https://img.qammunity.org/2020/formulas/physics/middle-school/xtulhiyxlc2mlvwyuezav8ly7cs5wqkryq.png)