Answer:
e = 10 V
Step-by-step explanation:
given,
number of the coaxial loops = 10
Cross sectional area = 0.5 m²
magnitude of magnetic field =
B = 3 T + (2 T/s)*t.
B = ( 3+ 2 t ) T
induced potential difference = ?
At time = 2 s
we know,
induced emf
![e = - N(d\phi)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/p517bcgsv3tjtzjz8o1u1g5ov1y0zml6g1.png)
∅ = B . A
![e = - N(d(BA))/(dt)](https://img.qammunity.org/2020/formulas/physics/college/8ejia7oui2xwwrn59a4l74ltmxgljuc1iz.png)
![e = - NA(dB)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/eysl3oeu6pxyyvjic8xn44x6zqq179n79h.png)
![e = - 10 * 0.5 * (d)/(dt)(3 + 2 t)](https://img.qammunity.org/2020/formulas/physics/college/5wnk1ckrurf9xcfol87uapqr9n9pazlk3h.png)
![e = - 10 * 0.5 * 2](https://img.qammunity.org/2020/formulas/physics/college/xz36wozfqh8h92v0kjcpjn4t5gua5bsedu.png)
e = -10 V
magnitude of induced emf
|e| = |-10 V|
e = 10 V
the induced potential difference in the loop = e = 10 V