Answer:
The time period on Titan is 2.67 hours.
Step-by-step explanation:
Given that,
Acceleration = 1.37 m/s²
Time on earth = 1 hour
Period of oscillation on earth
![T_(e)=2\pi\sqrt{(L)/(g_(e))}](https://img.qammunity.org/2020/formulas/physics/high-school/rpll8f75409l05r5jlok7rxwa4yznq16tu.png)
Where, L = length of the pendulum
The length of pendulum will be the same on the Titan.
The period of oscillation on Titan
![T_(t)=2\pi\sqrt{(L)/(g_(t))}](https://img.qammunity.org/2020/formulas/physics/high-school/tn3qcl77ltrq97hdvxtpd317y5zmgt2kd2.png)
We need to calculate the time period on Titan
![(T_(t))/(T_(e))=\frac{2\pi\sqrt{(L)/(g_(t))}}{2\pi\sqrt{(L)/(g_(e))}}](https://img.qammunity.org/2020/formulas/physics/high-school/af9ksjsce8rauz9qs634khnmxs3safl8zb.png)
![(T_(t))/(T_(e))=\sqrt{(g_(e))/(g_(t))}](https://img.qammunity.org/2020/formulas/physics/high-school/qyewibkvry2w9m8sc2rcjik8fc4fhhnh4c.png)
![T_(t)=T_(e)\sqrt{(g_(e))/(g_(t))}](https://img.qammunity.org/2020/formulas/physics/high-school/mvm0lrht76u5jktgm408zkx1o5m4a9uxb2.png)
Put the value into the formula
![T_(t)=1*\sqrt{(9.8)/(1.37)}](https://img.qammunity.org/2020/formulas/physics/high-school/1zsp1p4cqnrpinb4hl7buc1k75d7xij1pt.png)
![T_(t)=2.67\ hours](https://img.qammunity.org/2020/formulas/physics/high-school/ed9icg2hbpoj0qzu6r06obvms8ikigofm4.png)
Hence, The time period on Titan is 2.67 hours.