139k views
2 votes
Helpppp plzzz !!! 13 points

Helpppp plzzz !!! 13 points-example-1

1 Answer

2 votes

Answer:

x =
$ (-5)/(2) $

Explanation:

Given:
$ 3^(4x - 5) = ((1)/(27))^(2x + 10) $

Since, xᵃ . xᵇ = xᵃ ⁺ ᵇ we have


$ 3^(4x) .  3^(-5) $ =
$ (1)/(27^(2x + 10)) $

Since, 3³ = 27, we have:
$ 3^(4x) .  3^(-5) = (1)/(3^((3)(2x + 10))) $


$ 3^(4x) . 3^(-5) = (1)/(3^(6x.30)) $

Also,
$ a^x. a^(-y) = (a^x)/(a^(y)) $


$ (3^(4x))/(3^5)  = (1)/(3^(6x).3^(30)) $

Cross-multiplying we get:


$ 3^(6x).3^(30).3^(4x) = 3^(5) $


$ 3^(10x) = (3^(5))/(3^(30)) = 3^(-25) $


$ 3^(10x) = 3^(-25) $

Since the bases are same, the powers should be equal.

⇒ 10x = -25

x =
$ (-5)/(2) $
.

User Rodit
by
7.6k points