Answer:
Option 4 and 5.
Explanation:
Consider the given polynomial equation is
![x^(4)-4x^(3)=6x^(2)-12x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v7cyfd7qbjqcd87msz5j4i1iweu8y72k6m.png)
We need to find approximate values of the non-integral roots of the polynomial equation.
![x^(4)-4x^(3)-6x^(2)+12x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/frvj618gseybzxb0bdjc0ba8n9cro3kuf3.png)
Find factor form.
![x(x^(3)-4x^(2)-6x^(1)+12)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yqq4mlnvxthhuf36nuumjea63exodllnfr.png)
For x=-2 the value of parenthesis is 0. It means (x+2) is a factor of parenthesis.
Divide the parenthesis by (x+2). After division remainder is 0 and quotient is
, so the factor form is
![x (x + 2) (x^2 - 6 x + 6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kev2mugb686q2nd44f6vz6mck0ahbggzr6.png)
Equate the factor form equal to 0, to find the roots.
![x (x + 2) (x^2 - 6 x + 6)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jtixfqa9dokor08qll6w03wh740h0nuci7.png)
![x=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/7hekn15849nfrz752rdve3zqw7fwnla263.png)
![x+2=0\Rightarrow x=-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vd2ceho6j91ure4xiphldo22m4v6j9owde.png)
.... (1)
Quadratic formula for
is
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/mdgu1o7rsw0bnmbbc42pvyi37r641y1reu.png)
In (1), a=1, b=-6, c=6. Using quadratic formula we get
![x=(-(-6)\pm √((-6)^2-4(1)(6)))/(2(1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lg6gfwsjkxzdgupk2s828fbjllu9z71br4.png)
![x=(6\pm √(12))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iw4ngqn70hai18onr44p0rs5w4nl2lr2l8.png)
![x=(6\pm 2√(3))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p6ig7lycaex98ymr4padacp4s8nrk9rm8c.png)
![x=3\pm √(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m55o0c5f463n8g48dwef0kvlo5p3y8ygqt.png)
![x=3+1.73, 3-1.73](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pvg9hb1li6igfcxgqnm7b6o7kgoyry39ep.png)
![x=4.73, 1.27](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w6ykwffc4yxfmu39x3fx6j5v2rwl0qrn3n.png)
The approximate values of the non-integral roots of the polynomial equation are 4.73 and 1.27.
Therefore, the correct options are 4 and 5.