Answer:1.5625
Explanation:
Given
mean
![\mu =10 ounces](https://img.qammunity.org/2020/formulas/mathematics/college/s3qc6jnj713m6j0yufbju4ex9p6aefrzd5.png)
standard deviation
![\sigma =m ounces](https://img.qammunity.org/2020/formulas/mathematics/college/g1rkicfjwrcllo51lbjci7rr9c1w4iayce.png)
For bottles to be filled over 12 ounces i.e. area right to the bell curve for z score
and area left side of the z score is 1-0.1=0.9
so value close to 0.9 in standard normal curve which is 0.8997
z score corresponding to 0.8997 is 1.28
also z score for 12 ounce
![z=(x-\mu )/(\sigma )](https://img.qammunity.org/2020/formulas/mathematics/college/kehp4z7aanvec9ju3sc1ddgxdks3509w4q.png)
![z=(12-10)/(m)](https://img.qammunity.org/2020/formulas/mathematics/college/b0to7e7o9lvnbhd1tvpp3348c7ylp22q6g.png)
![1.28=(2)/(m)](https://img.qammunity.org/2020/formulas/mathematics/college/4uus3nszuzsqgzgbrbc0yylu5g20piyuhz.png)
![m=(2)/(1.28)](https://img.qammunity.org/2020/formulas/mathematics/college/fewn29y9vqa2jtg7nwilhwk40795fxdr3j.png)
![m=1.5625](https://img.qammunity.org/2020/formulas/mathematics/college/211659ezc3y0k2sopc5d69kbf28n9msnne.png)