Answer:
(4,-1)
Explanation:
Given
3 Co-ordinates of a parallelogram ABCD
A=(1,-3)
B=(1,0)
C=(4,2)
D=(a,b)
One of the property of a parallelogram is that the diagonals bisect each other
In this case, AC and BD bisect each other, Therefore the middle point of AC and BD coincide
⇒Mid-point of AC= Mid-point of BD
(mid point of 2 points (x,y) and (k,l) is
)
![(((1+4))/(2) ,((-3+2))/(2))=(((1+a))/(2) ,((0+b))/(2))\\((5)/(2) ,(-1)/(2))=(((1+a))/(2) ,(b)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1sw0k3w7n4yzzpux3xiz9yz9fl4dt88ky3.png)
Compare x and y co-ordinates on both sides
⇒
![(5)/(2) =(1+a)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q10g7lqz3vfj76wlp0zx1d5wv7exku0lov.png)
a=4
⇒
![(-1)/(2)=(b)/(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xpcsle86dnmd56f7jfn3caxuoidy7ydmog.png)
b=-1
Therefore D=(4,-1)