Answer:
a) file annex
b) V(c) = π*x²*y
A(x) = 2*π*x² + 32/x
C(x) = 0,1695*x² + 0,48 /x
Domain C(x) = {x/ x >0}
d) C(min) = 0,64 $
x = 1.123 in radius of base
y = 4,04 in height of the can
Explanation:
See annex file
Lets:
call x = radius of the base of the cylinder and
y = the height of the cylinder
Then
Volume of the cylinder ⇒ V(c) = π*r²*h ⇒V(c) = π*x²*y
And y = V / ( π*x²) ⇒ V = 16 / ( π*x²)
Area of cylinder = lids area + lateral area
lids area = 2*π*x² ⇒ lateral area = 2*π*x*y
lateral area =2*π*x [16/(π*x²) ] ⇒ lateral area = 32/x
Then
A(x) = 2*π*x² + 32/x
Function cost C(x)
C(x) = 0.027 * 2*π*x² + 0.015 * (32/x)
C(x) = 0,1695*x² + 0,48 /x
Domain C(x) = {x/ x >0}
Now function cost:
C(x) = 0,1695*x² + 0,48 /x
Taking derivative:
C´(x) = 2*0,1695*x - 0.48/x² C´(x) = 0,339*x - 0.48/x²
C´(x) = 0 0.339*x³ - 0.48 = 0 x³ = 0.48/0.339 x³ = 1.42
x = 1.123 in
y = 16/πx² ⇒ y = 4,04 in
C(min) = 0,64 $