Answer:
![I_t=4.95\ kg.m^2](https://img.qammunity.org/2020/formulas/physics/college/3kp608a8x5c7piukx93wm0pllev58abfay.png)
Step-by-step explanation:
Given that
L = 3 m
M = 2.4 kg
m=0.7 kg
r= L/2 = 1.5 m
The moment of inertia of rod about it center
![I=(ML^2)/(12)](https://img.qammunity.org/2020/formulas/physics/college/1funiwav7dla8cupne9lxwvd6685bgpdse.png)
The moment of inertia of point mass about center of rod
I'= mr² + mr²
So total moment of inertia
![I_t=(ML^2)/(12)+2mr^2](https://img.qammunity.org/2020/formulas/physics/college/fiv6cncpt5efutu0k5cj6bktldsw7o9lce.png)
By putting the values
![I_t=(ML^2)/(12)+2mr^2](https://img.qammunity.org/2020/formulas/physics/college/fiv6cncpt5efutu0k5cj6bktldsw7o9lce.png)
![I_t=(2.4* 3^2)/(12)+2* 0.7* 1.5^2](https://img.qammunity.org/2020/formulas/physics/college/8ik7yqw43e1z7h6nhy8ulv5fatnm1vutbm.png)
![I_t=4.95\ kg.m^2](https://img.qammunity.org/2020/formulas/physics/college/3kp608a8x5c7piukx93wm0pllev58abfay.png)