Answer: (A) 2.19
Explanation:
As per given , we have
Sample size : n= 30
Average number of vacation days a U.S. worker takes per year :
![\overline{x}=16](https://img.qammunity.org/2020/formulas/mathematics/college/faj8k3lj4evvucke409s6lm54bv6fy4k53.png)
Sample standard deviation : s= 12
Significance level :
![\alpha= 1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/high-school/z74sja0vlfxjt6laa69scg7ax4qdqx69zr.png)
Degree of freedom : df= 29 (n-1)
The standard error(SE) of sample mean
is given by :-
![SE=(s)/(√(n))\\\\=(12)/(√(30))=2.19089023002\approx2.19](https://img.qammunity.org/2020/formulas/mathematics/college/t4t3pig8ycjch5zvyaxg73jsxfxut12id1.png)
Hence, the standard error(SE) of sample mean
is 2.19.