Answer:
The area of the square when x = -2 and y = 2 is 256 sq. units.
Explanation:
The side of the square =
![2x^2 y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ek5kapu3mgfkn1z35hfri0v3anks2us66z.png)
Now, AREA OF THE SQUARE = SIDE x SIDE
⇒ Area of the square is:
![(2x^2 y) * (2x^2 y)\\= (2x^2 y)^2 = 4x^4y^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5dypl2bbykw6lbnluag94ivouj9iudqte5.png)
So, the area of the square is
![4x^4y^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/coe4ekb1cd2o7fb67xrdftpypfy33wp8dd.png)
Now, to find the area when x = -2 and y = 2
So,
![4x^4y^2 \implies 4 (-2)^4 (2)^2\\=4 *16 * 4 = 256](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uw4plse2wskynny9w4yg2k1qudkwaa97u6.png)
⇒The area of the square when x = -2 and y = 2 is 256 sq. units.