87.1k views
2 votes
Please help me with this math problem!! I've tried so many times!!! :(​

Please help me with this math problem!! I've tried so many times!!! :(​-example-1
User Ahorn
by
8.3k points

1 Answer

4 votes

Answer:

So the answer is DNC(Does Not Convergence)

Explanation:

Given;


\int\limits^\infty_5 {(7)/(x^(2)-9 ) } \ dx

We know,

The integral is an improper integral because the upper limit of integration approaches infinity. First, replace the infinite upper limit by the finite limit 'l' and take the limit of 'l' to approach infinity.


\int\limits^\infty_5 {(7)/(x^(2)-9 ) } \, dx=7 \lim_(l \to \infty)  \int\limits^\infty_5 {(1)/(x^(2)-9 ) } \, dx


7 \lim_(l \to \infty)  \int\limits^\infty_5 {(1)/(x^(2)-3^(2)  ) } \, dx


7*  \lim_(l \to \infty) \left [ (1)/(2* 3) \log\left |(x-3)/(x+3)   \right | \right ]_(5)^(l)
(∵We know;
\int {(1)/(x^(2)-a^(2)  ) } \, dx=  (1)/(2* a) \log\left |(x-3)/(x+3)   \right |
)


(7)/(6) * \lim_(l \to \infty) \left[ \log\left | (l-3)/(l+3) \right |-\log\left | (5-3)/(5+3)\right |\right]


(7)/(6) * \lim_(l \to \infty) \left[ \log\left | (l-3)/(l+3) \right |-\log\left | (-2)/(8)\right |\right]


(7)/(6) * \left[ \log\left | (\infty-3)/(\infty+3) \right |-\log( (2)/(8))\right]
(∵
\left | -(2)/(8)  \right |=((2)/(8) )
)


(7)/(6) * \left[ \infty-\log( (2)/(8))\right]


(7)/(6)* \infty


\infty

Thus the integral Does Not Convergence.

User Hubert Perron
by
8.7k points