25.2k views
4 votes
Nora and her children went into a grocery store and she bought $11.95 worth of apples and bananas. Each apple cost $1.25 and each banana costs $0.40. She bought a total of 15 apples and bananas altogether. Determine the number of apples and the number of bananas that Nora bought.

User Konkret
by
4.4k points

1 Answer

5 votes

Answer: apples = 7 and bananas = 8

Explanation:

Let x represent the number of apples and y represent the number of banana,

and it was said that the total apples and bananas altogether is 15 , that is

x + y = 15 ................. equation 1

Also,

1.25x + 0.40y = 11.95 ............. equation 2

Solving the two equations simultaneously ,

From the first equation, x = 15 - y ........... equation 3

substitute equation 3 into equation 2, we have

1.25(15 - y) + 0.40y = 11.95

18.75 - 1.25y + 0.40y = 11.95

18.75 - 0.85y = 11.95

18.75 - 11.95 = 0.85y

6.8 = 0.85y

therefore y = 6.8/0.85

= 8

substitute y = 8 , into equation 3

x = 15 - 8

x = 7

Therefore , she bought 7 apples and 8 banana

User Cellydy
by
4.7k points