Answer:
638.8kW
Step-by-step explanation:
The flow rate of the steam m = 22kg/s
The Pressure of the steam at the inlet of the turbine P1 = 1.6MPa
The temperature of the steam at the inlet of the turbine T1 = 350*C
Steam quality at the exit of the turbine x2 = 1.0
The temperature of the steam at the exit of the turbine T2 = 30*C
Power produced = 12,350kW
Assuming the turbine is running on a steady state, hence we neglect the effect of kinetic and potential energy we get:
If you refer to the superheated steam table for the specific enthalpy at a pressure of 1.6MPa and temperature of 350*C, we get
h1 = 3,146kJ/kg
Refer to the steam table for saturated gas at temperature 30*C to get the specific enthalpy value h2 = 2,556.81kJ/kg
The heat that comes out from the turbine can be defined from the balance of energy in the system, and is represented as
Ein - Eout = change in system Energy = 0
Thus Ein = Eout
mh1 = mh2 + Wout + Qout
Qout = m(hi-h2) - Wout
Qout = 22 x (3146-255.6) - 12350
Qout = 638.8kW