Answer:
The values of P are -87 or 86.
Explanation:
Given:
![3741=(P(P-1))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/imvnu8dfahuckl3rhu6y6dnzf2a4ohva6f.png)
Multiply by 2 on both the sides. This gives,
![3741* 2=(P(P-1))/(2)* 2\\7482=P(P-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yyxjz24jopm9q5t4d7vsgsgfjfael6tlno.png)
Now, use distribution property.
![7482=P* P - P* 1\7482=P^2-P](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oui6psxu46k0mp8n44neg3d099rw451m6f.png)
Now, add -7482 on both sides,
![P^2-P-7482=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ho8c6oxrcqgi6g8pf4g5nnzhbq4710a3v.png)
This is a quadratic equation of the form
which can be solved using quadratic formula with
![a=1,b=-1,c=-7482](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s736efhpiabc9h01mrpvgiyn4wuw74g8c2.png)
![P=(-b\pm √(b^2-4ac))/(2a)\\P=(-1\pm√((-1)^2-4(1)(-7482)))/(2(1))\\P=(-1\pm√(1+29928))/(2)\\P=(-1\pm√(29929))/(2)\\P=(-1-173)/(2)\textrm{ or }P=(-1+173)/(2)\\P=(-174)/(2)\textrm{ or }P=(172)/(2)\\P=-87\textrm{ or }P=86](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g9u2wvceyzpbjry1wej13fkszlqd4j1e4i.png)
Therefore, the values of P are -87 or 86