Answer : The conditional formation constant is
![1.83* 10^9](https://img.qammunity.org/2020/formulas/chemistry/college/hp1qvapncoe1hh4b0a75hqx40e65nj8nvh.png)
Explanation :
First we have to calculate the formation constant.
As we are given that:
![\log k_f=10.65](https://img.qammunity.org/2020/formulas/chemistry/college/3urajx46bx9svt00gi187jb75v08hurgup.png)
![k_f=10^(10.65)](https://img.qammunity.org/2020/formulas/chemistry/college/dhc6vntfwq4a1m15mln6w42bj9mayker73.png)
![k_f=4.47* 10^(10)](https://img.qammunity.org/2020/formulas/chemistry/college/c3sddonxavp8i71bvx73n9o094j5glm05d.png)
Thus, the formation constant is
![4.47* 10^(10)](https://img.qammunity.org/2020/formulas/chemistry/college/odki4jr8s0a6xxxs4qw2akvvuog29clo6i.png)
Now we have to calculate the conditional formation constant.
The expression used as:
![k'_f=\alpha_y^+* k_f](https://img.qammunity.org/2020/formulas/chemistry/college/5hgeqd19aq427lfouxly1oh8e6gr4lii1w.png)
where,
= conditional formation constant = ?
= activity coefficient at pH 9.00 = 0.041
= formation constant =
![4.47* 10^(10)](https://img.qammunity.org/2020/formulas/chemistry/college/odki4jr8s0a6xxxs4qw2akvvuog29clo6i.png)
Now put all the given values in the above expression, we get:
![k'_f=(0.041)* (4.47* 10^(10))](https://img.qammunity.org/2020/formulas/chemistry/college/6et4d9kb4racwocg2uu5qprmn57ebcoehh.png)
![k'_f=1.83* 10^9](https://img.qammunity.org/2020/formulas/chemistry/college/jacfnfcz0ncuicksro8wigooba6117qg98.png)
Therefore, the conditional formation constant is
![1.83* 10^9](https://img.qammunity.org/2020/formulas/chemistry/college/hp1qvapncoe1hh4b0a75hqx40e65nj8nvh.png)