Answer:
vB' = 1.19 m/s
θB' = 47°
Step-by-step explanation:
mA = 0.117 kg
vA = 2.80 m/s
mB = 0.141 kg
vB = 0
vA' = 2.10 m/s at an angle θA' = 30°
vB' = ?,
Let the ball B makes an angle θB' below X axis as shown.
Use conservation of momentum along X axis
mA x vA + mB x 0 = mA' x vA' CosθA' + mB' x vB' CosθB'
0.117 x 2.80 = 0.117 x 2.10 x Cos30 + 0.141 x vB' CosθB'
0.3276 = 0.213 + 0.141 x vB' CosθB'
vB' CosθB' = 0.813 .... (1)
Use conservation of momentum along Y axis
mA x 0 + mB x 0 = mA' x vA' SinθA' - mB' x vB' SinθB'
0 = 0.117 x 2.10 x Sin30 + 0.141 x vB' SinθB'
vB' SinθB' = - 0.871 .... (2)
Squarring and adding both the equations

vB' = 1.19 m/s
Divide equation (2) by equation (1), we get
tanθB' = - 1.07
θB' = 47°
Thus, the speed of ball B after collision is 1.19 m/s and it makes an angle 47° from X axis downward.