115k views
3 votes
Calculate the solubilities of the following compounds in a 0.02 M solution of barium nitrate using molar concentrations, first ignoring ionic strength and activities.

a. silver iodate
b. barium sulfate
c. Repeat the above calculations using ionic strength and activities.

1 Answer

4 votes

Answer:

a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹

c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹

Step-by-step explanation:

a. Silver iodate

Let s = the molar solubility.

AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸

E/mol·L⁻¹: s s


K_(sp) =\text{[Ag$^(+)$][IO$_(3)$$^(-)$]} = s* s =  s^(2) = 3.0* 10^(-8)\\s = \sqrt{3.0* 10^(-8)} \text{ mol/L} = 1.7 * 10^(-4) \text{ mol/L}

b. Barium sulfate

BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰

I/mol·L⁻¹: 0.02 0

C/mol·L⁻¹: +s +s

E/mol·L⁻¹: 0.02 + s s


K_(sp) =\text{[Ba$^(2+)$][SO$_(4)$$^(2-)$]} = (0.02 + s) * s \approx  0.02s = 1.1* 10^(-10)\\s = (1.1* 10^(-10))/(0.02) \text{ mol/L} = 5.5 * 10^(-9) \text{ mol/L}

c. Using ionic strength and activities

(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂

The formula for ionic strength is


\mu = (1)/(2) \sum_(i) {c_(i)z_(i)^(2)}\\\\\mu = (1)/(2) (\text{[Ba$^(2+)$]}\cdot (2+)^(2) + \text{[NO$_(3)$$^(-)$]}*(-1)^(2)) = (1)/(2) (\text{0.02}* 4 + \text{0.04}*1)= (1)/(2) (0.08 + 0.04)\\\\= (1)/(2) *0.12 = 0.06

(ii) Silver iodate

a. Calculate the activity coefficients of the ions


\log \gamma = -0.51z^(2)√(I) = -0.051(1)^(2)√(0.06) = -0.51* 0.24 = -0.12\\\gamma = 10^(-0.12) = 0.75

b. Calculate the solubility

AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)


K_(sp) =\text{[Ag$^(+)$]$\gamma_(Ag^(+))$[IO$_(3)$$^(-)$]$\gamma_{IO_(3)^(-)}$} = s*0.75* s * 0.75 =0.56s^(2)= 3.0 * 10^(-8)\\s^(2) = (3.0 * 10^(-8))/(0.56) = 5.3 * 10^(-8)\\\\s =2.3 * 10^(-4)\text{ mol/L}

(iii) Barium sulfate

a. Calculate the activity coefficients of the ions


\log \gamma = -0.51z^(2)√(I) = -0.051(2)^(2)√(0.06) = -0.51*16* 0.24 = -0.50\\\gamma = 10^(-0.50) = 0.32

b. Calculate the solubility

BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq


K_(sp) =\text{[Ba$^(2+)$]$\gamma_( Ba^(2+))$[SO$_(4)$$^(2-)$]$\gamma_{ SO_(4)^(2-)}$} = (0.02 + s) * 0.32* s* 0.32 \approx  0.02*0.10s\\2.0* 10^(-3)s = 1.1 * 10^(-10)\\s = (1.1* 10^(-10))/(2.0 * 10^(-3)) \text{ mol/L} = 5.5 * 10^(-8) \text{ mol/L}

User Daniel Sperry
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.