Answer:
![(dR(t))/(dt)=0.06\Omega](https://img.qammunity.org/2020/formulas/physics/college/46ju6cyf5sckebs06eiu2715t7s53qoplx.png)
Step-by-step explanation:
Since
, we calculate the resistance rate by deriving this formula with respect to time:
![(dR(t))/(dt)=(d)/(dt)((V)/(I(t)))=V(d)/(dt)((1)/(I(t)))](https://img.qammunity.org/2020/formulas/physics/college/4kd1btkxedp8eq3da3x6ogsra31taz5ven.png)
Deriving what is left (remember that
):
![(d)/(dt)((1)/(I(t)))=-(1)/(I(t)^2)(dI(t))/(dt)](https://img.qammunity.org/2020/formulas/physics/college/8gtnph14jb8oaxfz15gkl3n0jhfsow60db.png)
So we have:
![(dR(t))/(dt)=-(V)/(I(t)^2)(dI(t))/(dt)](https://img.qammunity.org/2020/formulas/physics/college/4zs9r5x6yi7faugrraab9zr393njh889xo.png)
Which for our values is (the rate of I(t) is decreasing so we put a negative sign):
![(dR(t))/(dt)=-(24V)/((56A)^2)(-8A/s)=0.06\Omega](https://img.qammunity.org/2020/formulas/physics/college/150odcy4rguaa25arkqm0xkt2jft2s0eyh.png)