Answer:
F=√[(1.5(14.58L+11.96))² + (3.2(2.97L - 157.03) + 62.72)²]
Step-by-step explanation:
Given data,
The mass of the bar AB, m = 6.4 kg
The angular velocity of the bar, θ˙ = 2.7 rad/s
The angle of the bar at A, θ = 24°
Let the length of the bar be, L = l
The angular moment at point A is,
∑ Mₐ = Iα
Where, Mₐ - the moment about A
α - angular acceleration
I - moment of inertia of the rod AB


Let G be the center of gravity of the bar AB
The position vector at A with respect to the origin at G is,
![\vec{r_(G)}=[(lcos\theta)/(2)\hat{i}-(lcos\theta)/(2)\hat{j}]](https://img.qammunity.org/2020/formulas/physics/college/zyggwq1gibsb1g4h7yp1puqraijcwtnim7.png)
The acceleration at the center of the bar

Since the point A is fixed, acceleration is 0
The acceleration with respect to the coordinate axes is,
![(\vec{a_(G)})_(x)\hat{i}+(\vec{a_(G)})_(y)\hat{j}=0+((-3gcos\theta)/(2l))\hat{k}*[(lcos\theta)/(2)\hat{i}-(lcos\theta)/(2)\hat{j}]-\omega^(2)[(lcos\theta)/(2)\hat{i}-(lcos\theta)/(2)\hat{j}]](https://img.qammunity.org/2020/formulas/physics/college/snkq85vtps7pbszzr1s96p9zoukst0nhk0.png)
![(\vec{a_(G)})_(x)\hat{i}+(\vec{a_(G)})_(y)\hat{j}=[-(cos\theta(2l\omega^(2)+3gsin\theta))/(4)\hat{i}+((2l\omega^(2)sin\theta-3gcos^(2)\theta)/(4))\hat{j}]](https://img.qammunity.org/2020/formulas/physics/college/ki702ybjyo0csibowiqvhwfbcxve0q09md.png)
Comparing the coefficients of i

Comparing coefficients of j

Net force on x direction

substituting the values
=1.5(14.58L+11.96)
Similarly net force on y direction

= 3.2(2.97L - 157.03) + 62.72
Where L is the length of the bar AB
Therefore the net force,

F=√[(1.5(14.58L+11.96))² + (3.2(2.97L - 157.03) + 62.72)²]
Substituting the value of L gives the force at pin A