Answer:
1.08m/s
Step-by-step explanation:
To develop this problem it is necessary to resort to the concept developed by Bernoulli in his equations in which
describes the behavior of a fluid along a channel.
Bernoulli's equation is given by
![(P_1)/(\rho g)+(V_1^2)/(2g)+z_1 = (P_2)/(\rho g)+(V_2^2)/(2g)+z_2](https://img.qammunity.org/2020/formulas/physics/college/xzcaj2dzwhmj6erggu4j33wvor4sbem32j.png)
Where,
Pressure at determinated point
density (water in this case)
Velocity at determinated point
g = Gravity acceleration
z = Pressure heads at determinated point.
We know that the problem is given in an horizontal line, then the pressure heads is zero.
And for definition we know that,
![P = \rho g (h+R)](https://img.qammunity.org/2020/formulas/physics/college/4toubnleyuidaqy8k4hoiweczxqeffbakc.png)
Where h means the heights of water column measured by the pitot tube at the top and the piezometer. Then replacing both pressure with the previous values we have:
![P_1 = \rho g (h_(Piezometer)+R)](https://img.qammunity.org/2020/formulas/physics/college/tgsfsj1zz5russ6mfrp8700urfkavpx8bb.png)
![P_2 = \rho g (h_(Pitot)+R)](https://img.qammunity.org/2020/formulas/physics/college/nk49ebs58hnxntnsbg7du5xrlvpsjtqb8n.png)
Then replacing
![(\rho g(h_(Piezometer)+R))/(\rho g)+(V_1^2)/(2g)-(\rho g(h_(Pitot)+R))/(\rho g)-(V_2^2)/(2g)=0](https://img.qammunity.org/2020/formulas/physics/college/xe096aou2wsdw01vvmz2drpr2o3mfzz10k.png)
![(\rho g(h_(Piezometer)+R))/(\rho g)+(V_1^2)/(2g)=(\rho g(h_(Pitot)+R))/(\rho g)+(V_2^2)/(2g)](https://img.qammunity.org/2020/formulas/physics/college/ijjxvcf4rwmgkc8mwgf3mq5gmwjulnht5i.png)
![(h_(piezometer)+R)+(V_1^2)/(2g)=(h_(pitot)+R)+(V_2^2)/(2g)](https://img.qammunity.org/2020/formulas/physics/college/ol7nbx3x3gyhlgnlqqtq0do1w6takutwm9.png)
![h_(piezometer)+(V_1^2)/(2g)=h_(pitot)(V_2^2)/(2g)](https://img.qammunity.org/2020/formulas/physics/college/jkawn3a80l1w8663cypp677zjb1x9un4n5.png)
At the end of the pipe the speed is zero, since there is stagnation then:
![h_(piezometer)+(V_1^2)/(2g)=h_(pitot)+(0)/(2g)](https://img.qammunity.org/2020/formulas/physics/college/tmtq2iprz9fbwrvssv0msbuwrvz19rqkjq.png)
![h_(pitot)-h_(piezometer)=(V_1^2)/(2g)](https://img.qammunity.org/2020/formulas/physics/college/beuyongb3ncrrusaoixvvvd4gg05qby19f.png)
Re-arrange for
=
![V_1 =\sqrt{2g(h_(pitot)-h_(piezometer))}](https://img.qammunity.org/2020/formulas/physics/college/gf9xx63y9yporyuu300lcdnxnigjth0q0p.png)
Replacing the values where
and
we have,
![V_1 = √(2*9.8(0.32-0.26))](https://img.qammunity.org/2020/formulas/physics/college/uqy5w0zgrv9ayl47ve0dppegh2fypy4vuy.png)
![V_1 = 1.08m/s](https://img.qammunity.org/2020/formulas/physics/college/qkb67gu0icexsda764f5vvpv4qjytiofps.png)
Therefore the velocity at the centerline is 1.08m/s