57.4k views
4 votes
If a(x) = 2x - 4 and b(x) = X + 2, which of the following expressions produces a quadratic function?

O (ab)(x)
O (a - b)(x)
O (a + b)(x)

1 Answer

4 votes


(ab)(x) Produces quadratic function

Solution:

Given that

a (x) = 2x – 4 and b(x) = x + 2

Need to check which of the expression from given three expression produce a quadratic function. Let us solve each option and check the result.


(a b)(x)=a(x) * b(x)=(2 x-4) *(x+2)


\begin{array}{l}{=x(2 x-4)+2(2 x-4)} \\\\ {=2 x^(2)-4 x+4 x-8} \\\\ {=2 x^(2)-8}\end{array}


\Rightarrow \quad(a b)(x)=2 x^(2)-8

So (ab)(x) produces a quadratic function
2x^2-8.


\text { 2) }(a-b)(x)=a(x)-b(x)=(2 x-4)-(x+2)


\begin{array}{l}{=(2 x-4)-(x+2)} \\\\ {=2 x-4-x-2} \\\\ {=x-6}\end{array}


\Rightarrow(a-b)(x)=x-6

So (a - b)(x) produces a linear function x – 6.


\begin{array}{l}{\text { 3) }(a+b)(x)=a(x)+b(x)=(2 x-4)+(x+2)} \\\\ {=(2 x-4)+(x+2)} \\\\ {=2 x-4+x+2} \\\\ {=x-2}\end{array}


\Rightarrow(a+b)(x)=x-2

So (a + b)(x) produces a linear function x – 2.

Hence we can conclude that (ab)(x) produces quadratic function.

User Prakash Thapa
by
9.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories