Answer:
the confidence interval is from 46641.96 to 45958.04
Step-by-step explanation:
Using this formula X ± Z (s/√n)
Where
X = 46300 --------------------------Mean
S = 1100----------------------------- Standard Deviation
n = 28 ----------------------------------Number of observation
Z = 1.645 ------------------------------The chosen Z-value from the confidence table below
Confidence Interval Z
80%. 1.282
85% 1.440
90%. 1.645
95%. 1.960
99%. 2.576
99.5%. 2.807
99.9%. 3.291
Substituting these values in the formula
Confidence Interval (CI) = 46300 ± 1.645(1100/√28)
CI = 46300 ± 1.645(1100/5.2915)
CI = 46300 ± 1.645(207.8806)
CI = 46300 ± 341.9636
CI = 46300 + 341.9636. ~. 46300 - 341.9636
CI = 46641.96. ~. 45958.04
In other words the confidence interval is from 46641.96 to 45958.04