Answer:
θ = 21.44º
Step-by-step explanation:
Given
m₁ = 0.39 Kg
m₂ = 0.72 Kg
L = 1.35 m
u₁ = 2.5 m/s
u₂ = 0 m/s
v₁ = 0 m/s
It is an elastic collision. After the collision, we apply the following equation for the horizontal motion
⇒ v₂ = (m₁*u₁+ m₂*u₂- m₁*v₁)/(m₂)
⇒ v₂ = (0.39 Kg *2.5 m/s + 0.72 Kg*0 m/s - 0.39 Kg *0 m/s) / (0.72 Kg)
⇒ v₂ = 1.3542 m/s
Then we apply
Einitial = Efinal ⇒ Ki + Ui = Kf + Uf
Knowing that
At the lowest point of travel h = 0 m
At the highest point of travel v = 0 m/s
⇒ Ki + 0 = 0 + Uf ⇒ 0.5*m* v22 = m*g*h
⇒ h = 0.5*v₂²/g
⇒ h = 0.5*(1.3542 m/s)²/(9.8 m/s²) = 0.0935 m
The maximum angle the rope makes with the vertical is:
θ = ArcCos ((L-h)/L)
⇒ θ = ArcCos ((1.35 m -0.0935 m)/ 1.35 m)
⇒ θ = 21.44º