483,249 views
40 votes
40 votes
.............................


\frac{ {9}^(x + 1) - {3}^(2x) }{4 * {3}^(2x - 1) } \\

ans : 6

User Ilexcel
by
2.6k points

1 Answer

12 votes
12 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Here we go ~


\qquad \sf  \dashrightarrow \: \cfrac{9 {}^((x + 1)) - 3 {}^(2x) }{4 * 3 {}^((2x - 1)) }


\qquad \sf  \dashrightarrow \: \cfrac{3{}^(2(x + 1)) - 3 {}^(2x) }{4 * 3 {}^((2x - 1)) }


\qquad \sf  \dashrightarrow \: \cfrac{3{}^((2x + 2)) - 3 {}^(2x) }{4 * 3 {}^((2x - 1)) }

here :


  • { \sf {3}^((2x+2))=({3}^(2x - 1))\sdot (3³)}


  • { \sf {3}^((2x))=({3}^((2x - 1)))\sdot (3¹)}


\qquad \sf  \dashrightarrow \: \cfrac{3{}^((2x - 1))(3 {}^(3) - 3 {}^(1)) }{4 * 3 {}^((2x - 1)) }

[ taking
{ \sf {3}^((2x - 1)) }common here ]


\qquad \sf  \dashrightarrow \: \cfrac{27 {}^{} - 3 {}^{}}{4 }


\qquad \sf  \dashrightarrow \: \cfrac{24{}^{} {}^{}}{4 }


\qquad \sf  \dashrightarrow \: 6

User Andrej K
by
3.1k points