Answer:
p_k=\sqrt{p_x^2+p_y^2}}
Step-by-step explanation:
Apply the momentum in each direction knowing that the impact is at the same time for the pieces so
![p_x=m_1*v_1](https://img.qammunity.org/2020/formulas/physics/high-school/9sz24r31mdsdiftbblneankw9u0um35z9m.png)
![p_x=200g*2.0m/s=0.4kgm/s](https://img.qammunity.org/2020/formulas/physics/high-school/bxwa38bgrqb21k7qn8nuxbzn6gp423m395.png)
![p_y=m_2*v_2](https://img.qammunity.org/2020/formulas/physics/high-school/pypt4szm0l260e2sh5ce1nm4g3ezljei69.png)
![p_y=235g*1.5m/s=0.3525kgm/s](https://img.qammunity.org/2020/formulas/physics/high-school/gqbseufj9alwbpiwgkbzyzr2h9fsitnvme.png)
So the momentum in the other piece can be find knowing that
![p_x^2+p_y^2=p_k^2](https://img.qammunity.org/2020/formulas/physics/high-school/xpbi52708ytcfliqdl3kxsn0iy7khl1qms.png)
So:
![p_k=√(p_x^2+p_y^2)}](https://img.qammunity.org/2020/formulas/physics/high-school/jz3vnb0oxsnvkdbe6ljlln9lyzteb8e2cv.png)
![p_k=√(0.4^2+0.3525^2)}=√(0.2842 kg^2*m^2/s^2)](https://img.qammunity.org/2020/formulas/physics/high-school/8fnoyixxhibft6y4jh4v6ne3jdss3he4zt.png)
![p_k=0.5331kg*m/s](https://img.qammunity.org/2020/formulas/physics/high-school/bomc3gze8e4jpc538iteymhpixvzvszq4m.png)
To find the velocity knowing the mass
![p_k=m_k*v_k](https://img.qammunity.org/2020/formulas/physics/high-school/lgkp5kc024zuxn64wk477t8np9dd8hirei.png)
![v_k=(p_k)/(m_k)=(0.5331 kg*m/s)/(0.10kg)](https://img.qammunity.org/2020/formulas/physics/high-school/lwo0ki29vgt5e87a82480g2wzj14diij0z.png)
![v_k=5.331 m/s](https://img.qammunity.org/2020/formulas/physics/high-school/7re84by932kff1lbhhtfvh7016p6jzmo5l.png)