Answer:
![20\sqrt5](https://img.qammunity.org/2020/formulas/physics/college/ub4xab93aoxddj13cz1u9z9huhe42vlqlt.png)
Step-by-step explanation:
According to the question
![2lb+2bh+2hl=94](https://img.qammunity.org/2020/formulas/physics/college/p3uug8pw1bmiqdmrd3ntxxl1vcpbfgq0ei.png)
![4l+4b+4h=48\\\Rightarrow 4(l+b+h)=48\\\Rightarrow l+b+h=12](https://img.qammunity.org/2020/formulas/physics/college/h7ghrdq5y1kjzdg2xopudc4wfks2lzawly.png)
Length of the diagonal is given by
![d=√(l^2+b^2+h^2)](https://img.qammunity.org/2020/formulas/physics/college/zj36zv27fvc1pntgfj77xv2ng64jivvtlu.png)
This can be also written as
![d=√((l+b+h)^2-(2lb+2bh+2hl))\\\Rightarrow d=√(12^2-(94))\\\Rightarrow d=√(144-94)\\\Rightarrow d=√(50)=5\sqrt2\ in](https://img.qammunity.org/2020/formulas/physics/college/f225eigy64hukzr75wqw06gusp07idkprj.png)
The length of one diagonal is
![5\sqrt2\ in](https://img.qammunity.org/2020/formulas/physics/college/t6f33rl8anq55pend0q25ixeqo16wa6vpp.png)
As there are 4 diagonals the sum of the lengths of the prism is
![4* 5\sqrt2=20\sqrt5](https://img.qammunity.org/2020/formulas/physics/college/haxlf8i8bkoyg70rzqztdu50amhirxk6s4.png)
With the given information the exact dimensions of the prism cannot be determined as the two equations cannot be solved and trigonometry can also be not used.